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Abstract

The transient response of a rectangular window pane exposed to
a far-field sonic boom disturbance is studied with the help of both the
linear and nonlinear theories. The sonic boom disturbance causes a
lateral disturbance in the form of an N-shaped pressure pulse and an
inplane disturbance in the form of a sinusoidal pulse.

In the linear theory, the imposition of lateral and inplane pulses
may be simultaneous or separated by a brief time-delay. In addition
there may be a static inplane load. Due to the inplane sinusoidal pulse
load, the equation of motion is of the Mathieu type. An improved pro-
cedure in solving Mathieu's equation is presented. The effects of the
inplane static and dynamic loads, the pulse durations, and the time-lag
are studied.

In the nonlinear theory, in addition to the usual simply supported
boundary conditions, two sets of inplane boundary conditions are speci-
fied: movable vertical sides and immovable vertical sides. For both
sets of inplane boundary conditions, the longitudinal inertia of the plate
is either neglected or considered by assuming that the longitudinal mass
is concentrated at the top of the plate. The equations of motion are
reduced to a set of ordinary nonlinear coupled differential equations by

using the Galerkin method. These equations are solved numerically by




Hamming's modified predictor-corrector integration method, The

effects of the dynamic inplane load, the lateral overpressure, and the
movable and immovable vertical sides are studied. A comparison of

the results obtained by the linear and nonlinear theories is made.




CHAPTER L

INTRODUCTION

The effects of sonic boom disturbances on structural elemenis have
been extensively studied in recent years [1]. The disturbance was ideal-
ized as an N-shaped pressuire wave moving either parallel or normal to
the surface of the structural element [2]. The load is therefore laterally
applied. One of the most vulnerable structural elements is known to be
the plate glass window [3]. Due to a certain unfavorable combination of
circumstances, a window pane may be subjected to inplane as well as
lateral disturbances. It is conceivable that much higher stress ampli-
tudes may result due to the presence of the additional inplane disturbance.

A rectangular plate subjected to an inplane static load tends to
become more flexible if the load is compressive and more rigid if it is
tensile. The vibration problems of a rectangular plate with constant
inplane static loads and various boundary conditions have been studied
rather extensively [4]. The dynamic response of a plate subjected to a
steady-state periodic inplane disturbance has also been extensively
treated [5][6]. However, the dynamic behavior of a plate subjected to
both lateral and inplane disturbances has not appeared in the literature.

When a flat plate is subjected to a steady-state periodic inplane
disturbance, the plate may exhibit lateral oscillations. This type of

oscillation is induced by what is known as a parametric excitation.




Linear theories can be used to predict the frequency zones for which a
lateral parametric excitation may exist. However, nonlinear effects
must be included to determine the amplitude of these oscillations.

Using a nonlinear theory, Bolotin [5] presented a one mode
solution for the amplitude of the lateral parametric vibrations of a
simply supported plate. it was assumed that the longitudinal mass of
the plate was small and, therefore, the distributed longitudinal inertia
of the plate was neglected. The periodic inplane disturbance was
transmitted to the plate by a rigid bar. The problem was solved for
a rigid bar that was massless and for a rigid bar which had a distri-
buted mass along it. The principal instability zone was determined as
well as the amplitude of the lateral vibrations.

Somerset and Evan-Iwanowski [6],, using a large deflection
theory, analyzed the same problem using a four mode expansion for
the amplitude of the lateral parametric vibrations., There was a dis-
tributed mass along the rigid bar on the top and the effects of the dis-
tributed longitudinal inertia of the plate were included in the analysis.
It was shown that the inplane distributed inertia influences the fre-
quencies associated with the principal instability zone. Further, it
was shown that when the mass on the top becomes very large, the solu-

tion reduces to that given by Bolotin [5].




It is clear that the primary aim of ke above investigations [5]
[6] was to study the dynamic stability of the structure under the para-
meftric excitation, The phenomenon of instability is associated with
large time, On the other hand the present investigation deals with the
dynamic response of a rectangular plate subjected to both inplane and
lateral disturbances which are essentially transient ir nature,

The rectangular plate under consideration is simply supported
along all edges. It is subjected to a lateral disturbance in the form of
an N-shaped pressure pulse, and to a dynamic inplane disturbance in
the form of a sine pulse (Fig. 1). The imposition of the lateral and
inplane disturbances may be simultaneous or separated by a brief
time-~delay. In addition, there may be a static inplane load (or pre-
stress) in the vertical (y) direction. However, the loading condition at
the top of the plate is such that it is incapable of transmitting a tensile
load. In other words, the combination of the prestress and the dynam-
ic inplane load can never be in tension and, if the prestress is absent,
the sinusoidal inplane pulse has only a compression phase.

The problem is studied first by a small deflection or linear
theory. Due to the presence of the inplane dynamic load in the form
of a sine pulse, the equations of motion are of the Mathieu type [7].
For the present problem, only the stable sclution is of interest., The
homogeneous equations are solved by a procedure first suggested by

Floquet [8]. Following McLachian [9], the solution is obtained in




terms of Mathieu functions of fractional order., However, it is dis-

covered that the procedure outlined by McLachlan does not always insure
an accurate determination of the coefficients in the series solution. An
improved procedure is presented in Chapter 2 which removes this draw-
back, Once the solution to the homaogeneous equation is obtained, the
particular soluiion is determined by the method of variation of para-
meters.

It may be anticipated that the lateral deflection of the plate may
reach such a magnitude as to render the results of the linear theory
invalid. In that case, the nonlinear plate equations known as the Von
Kérmén [10] equation must be used to take into account the stretching
of the mid-surface of the plate. For this dynamic problem, the equa-
tions of motion and the associated boundary conditions can be derived
by Hamilton's Principle [11]. The derivation is carried out in the
Appendix,

In Chapter 3, the problem is posed for two different inplane
boundary conditions: mwovable vertical sides and immovable vertical
sides. Along the top edge of the plate, where the dynamic inplane load
is transmitted to the plate, two sets of conditions are specified. One
has the longitudinal mass of the plate lumped along a rigid bar and the
other a rigid bar with no mass, All the sides of the plate are con-

strained to remain straight. A three mode expansion for the lateral




deflection is proposed. The inplane dispiacemenis are determined in
terms of the lateral deflection. By using the Galerkin Method [12], the
equations of motion governing the lateral deflections are reduced to a
set of ordinary differential equations. Thege equaticns are coupled
and nonlinear, and are solved nurerically using Hamming's Modified
Predicior-Corrector Integration Technique [13].

In Chapter 4, the solutions based on the linear and nonlinear
theories are applied to a square glass plate with the ratio of sides, a,

to thickness, h, of 240. The severity of the dynamic response of the

plate to the dynamic loadings is studied with the help of a dimension-
less quantity known as the dynamic amplification factor for stress
(DAF), The DAF is defined as the ratio of the maximum dynamic
stress to the maximum static stress. The maximum static stress is
obtained on the basis of the small deflection theory when the plate is
subjected to the peak pressure of the N-shaped pressure pulse uni-
formly applied over the plate. It is seen that if the DAF' is known for
a given plate subjected to the given disturbances, the maximum stress
can be easily obtained,

Using the linear theory, the case with no time-lag is con-
sidered first, followed by the case with either a positive or a negative
time-lag. A positive time-lag means that the lateral disturbance

leads the inplane disturbance hy a cexiziz Zme,. The affects of the




inplane loads (both static and dynamic), the duration of the inplane
dynamic load, and the time-delay between the inplane and lateral dis-
turbances are studied.

To simplify the amount of computations in the nonlinear model,
the duration of the inplane and lateral disturbances are made the same
and the time-lag is not considered. In the case of the movable sides,
it is shown that if the prestress is absent the effect of the longitudinal
inertia is negligible for the problem studied. The effects of the
dynamic inplane load, the overpressure of the N-shaped disturbance,
and the movable and immovable vertical sides are studied. |

A comparison of the linear and nonlinear theories is made to
delineate the Validitgr of the linear theory. For émall overpressure,
P, less than 2ps?, the deflections obtained by the linear theory are

only 10% greater than those of the nonlinear theory.
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Chapter 2. Response of Rectangular Plates Based on Small Deflection
Theory

a) Formulation of the Problem

Consider a simply supported rectangular plate, of sides a and b,
and of uniform thickness h, which is subjected to an inplane as well as
a lateral disturbance. The lateral disturbance is characterized by an
N-shaped pressure pulse followed with a time delay, to, by the inplane
disturbance characterized by a single sine pulse. In addition, there is
an inplane prestress in the vertical direction, ﬁy' The plate and the
disturbances are illustrated in Fig. 1.

The equation of motion of the plate [14] is:
DV + [Qg 5in2T (£-1) H(t-t) HETotomt) + Nyl wy gy

b = pe (1-2/T) HIT-1) | (2.1)

in which comma represents derivative with respect to space‘ and dot,
derivative with respect to time. w is the lateral deflection of the plate,

and H is the Heaviside function. Defining:

w-w f-£ T-fe T=L -r

= , L= = =

h T4 Cig Ty (2.2)
where T 11 is the fundamental period of the plate corresponding to

m = n = 1 in the following period equation:

e

f=qé
MRy D




(2. 1) may be written as:

2 2 . - T
w D gry Q{QDSI 0 2T (FEHE T H AT +E- T)
JdEE gt AT (2. 4)
2 , i
+Ny}w)y\/ =z Eil‘?"t’) (J“Z%/Z)H(f‘f> .
M h
The boundary conditions for the plate are:
_\;_:.\;?M_V:O ' atx =0 and x = a,
XX
(2.5)
W =w—— =0 ty =0 andy = b.
W - aty and y
Letting
e T S i nTY
Wooyt)E 22 (‘t)snll—jsn 5 (2. 6)

mz4 n=1 m”

and expanding the right side of (2.4) in a double sine series, one gets

for any (m, n) the following differential equation:

T # T § [ (B E2Y - (20’ ey

T mn N

- (zrrn’) Qo sip 21T (1. to) HI ’%&H(di*fo'jﬁ)} (2.7)
Nc X T . ,

2 — — e
= bFPo bt (1 2EIT)H(TE)
mnT O’Cl’\”

in which the time derivative is taken with respect to t and
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NC = h O’“Q
2 2 2
. = T2E (JL> [ﬁ/ﬁffi’.}] (2. 8)
304-w2)\b 2
(2,7) may be written in a simpler form
Toan T [ B - 25y 10 5L (E-Eo) HE-To) HEZ -1 )]
(2.9)
=, H(ET)
with
_ I Ny 2]
7] .,..:1:_?: - 2N
mn (2 [) [( Lmn) Nt;
2
'ESD = (2 h'ﬂ) o
= (2.10)
2
Sz EHfo (}3) (1- 2%/7)
mnw 20, ‘h
Using the following transformation
:17; C“‘E“% ) - I’:
y2 " o py ) (2.11)
(2. 9) becomes:
d ( - :’.‘i it i e T 7T
dim w*‘iﬂmﬂw 29, tos 2y H[E%.“Uﬁgi)] i'i[plz:“(?%ﬁ(w;;ﬂ}—);nn(vl)
L o (2.12)
- ZoF STy
= /‘)ﬁ)n(fyl) H[f to“ :}7}’&/}1‘ 4” )
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with

=
3
!

= 4k 23)2[('{:_“ Yb E{Y t’“\z‘:i

L‘mf} NQ
) 22 Qo (2.13)
%n = 2.(naT) N,
2 -2 7
. bipob d?) (1-2%(n TN Loy (2. 14)
hmﬂ" mn%ha (Tf2 -7 4) z

It is assumed that the support at the top of the plate is such that no
tensile inplane load is transmitted to the plate. Hence the following

condition is specified:

N - > - (2.15)
Ny - Qg cos 2y 20,
Three cases for the time-lag are considered: —;c—0< 0 ,
t =0 ,and t > 0 . In the time interval where the inplane pulse
o o

is off the plate,(2.12) becomes an ordinary differential equation with
constant coefficients, and with proper initial conditions, the solution
is easily obtainable., In the time interval where there is an inplane
pulse but no lateral load, (2.12) becomes an equation of the Mathieu
type. If there is an inplane pulse as well as a lateral load, (2,12) is
an inhomogeneous Mathieu equation., The procedure is to solve the
Mathieu equation supplemented by the particular solution which may be

obtained by the standard method of variation of parameters,
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b) Solution to Mathieu's Equation

The following equations are the typical ones that require solution:

‘7:(9,) HlA-2qcos29) TO) = hiy) (2.16)

;ILCV)/) + (A - 29 COSZU‘\) 7’(»2/):: o (2.17)

where T (YL) represents the second derivative of T with respect to M
A and q are given as specified in (2. 13). The initial conditions may be

specified as follows:
at v wm g T(Q,L)f D,
T(YH/) = DZ

where D1 and DZ are prescribed or predetermined.

The solution to (2. 17) may be written as [8][9]:

o, 2 _254
e (3 C,s e

. dn 2 250
T=Kie "2 Chge™ " + Ky P )

; (2.18)
Sz-e0 2

where Kl and KZ are to be determined by the initial conditions and d
is a number, depending on A and g, still to be determined. For the
values of A and q chosen in this investigation, the solution, (2.18),
would always be stable at large v, - Therefore d can be repre-

sented by i( # + m), where B is a real fraction and m is an integer.

Then for m odd and even (2. 18) takes the following forms respectively:
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= % .
= A 2 G, COSOTHTEN ¢ Ky 2 Gy Sinratg)Y (2.19a)
T= K, 5;‘:@02,, Cos2rtiz)y Mfzg_wizﬁ sin (2rv B, (2. 19b)

Substituting either term of (2. 19a) into (2.17) and setting the coeffi-
cient of cos(2r+1+8)7), or sin(2r+2+j3) n to zero for rz-co #p vo »

one obtains the recurrence relation

CZM:L B %(czr@g“’“@zrwi):ot (2.20a)

(A-(2r+a+8)]

Similarly, using (2. 19b) one gets:

[A-Cor +8)Y1 C, - q(Chpy,+Chriy)= O, (2. 20b)
Allowing r to fake both positive and negative integer values as

well as zero, a number of simultanecus equations in the saime number

of unknown coefficients are obtained by truncating (2. 20) from both

ends., It was found that by truncating the series at|rl > rp = J?T/z #+N

where N 2 5, the terms of the series neglected are very small due to

the rapid convergence of the series, Since there are n simultaneous

homogeneous equations in n unknown coefficients, the value of J may

be determined as an eigenvalue by setting the determinant equal to zero.
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This procedure, however, is not suitable because in most cases (except
when A is very small) it is very difficult to find f  accurately. A
more accurate method of obtaining g must be used. This method is
discussed in the next section,

The B , evaluated by the method outlined in the next section,
is substituted into (2. 20), and the coefficients may be determined, An
accurate evaluation of the C's depends on the corrvectness of [ used
and the procedure by which the C's are determined, If the C's so deter-
mined yield a check # which is the same as the original & wused, it
is an assurance that all the C'g are correct. Otherwise, the results
are in doubt, Assuming that an accurate [ Thas been obtained, the
proper procedure is to set aside the equation having the smallest factor
in (2. 20a) (or for C

(absolute value) for CZr . in (2. 20b)). Each

+1 2

coefficient in the remaining equations is then normalized with respect
to one of the coefficients, and the equations solved for the normalized
coefficients, By using the equation which was singled out at the start,
the accuracy of the C's is checked by recovering # and comparing
it with the initial value of & . In the present work, the recovered §
usually agree with the initial ones to several significant figures,
It is noted that the above procedure is different from that of

McIachlan [9] who always sets aside the equation for r = 0 in (2. 20) for

recovering f . When Mclachlan's procedure is followed, Table 1
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indicates that the check /& 1is far from confirming the fact that the
initial & used and therefore the coefficients C determined are
correct. It should be pointed out that the initial /2 listed in Table 1
are obtained by an improved formula supplemented by an iteration pro-
cedure. Thev are believed to be more accurate than those obtained by
the existing method [9]. This is confirmed by the fact that by adopting
the new procedure outlined above, all the initial gfﬁ are confirmed to
be almost exact.

Table 1. Comparison of Initial and Check §

A q Initial Check
4,465 0.744 0.0893 0. 0570
17.28 2. 88 0.1251 0, 1803
38. 94 0.028 0.2399 6..2250
38. 88 6,48 0.18957 0.12413
41. 827 . 211 0.4674 0,582
69. 12 11.525 0.2535 0.371
84. 27 14. 045 0.11349 0. 0572
108. 00 18. 00 0.31739 1.4828
125, 14 15, 68 0.155 -0. 681
144. 00 18. 00 0.952 0.679
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For modes higher than the fundamental, Ais usuallyvery large, and
much bigger than gq. Then another procedure, namely perturbation, is
more efficient for obtaining the solution [9]. Rewrite (2. 17) in the foll-
owing form:

T+AT = {Aa%cogzvz)'?” (2.21)
First neglect the r.h. s., the solution then consists of cos \m"vL and sinﬁyl,

Now substitute cos{A YL for T on the r.h.s, of (2.21), there results

R
oss

7+ AT =%l cosllAr2)n, + cos(TA- 2], (2.22)

for which the particular solution can be obtained. Substituting the latter
for T in (2.21) on the r.h.s., another particular solution may be obtained.
By repeating this procedure, and also using sianl , the solution

takes the form of an infinite series:

X X0
T=K; 2 ClcostA-2r)y +K, 3 Cp sinffA-2r)y, (2.23)

-0 200

with the recurrence relation as follows:

4rWA-T)C, - %(Cr;iqvcmi)c@,

If r << A, the recurrence relation may be simplified to yield:




16

7 -
4rC, .{_7;‘;(6!,vi #C,,) 0, (2. 24)

which is identical to the recurrence relation for the J-Bessel function

p‘r ovided that

Cr:jf(?,/zd'/@). (2.25)

When q/2 /A <<r , J may be represented by the first term
v

of its expansion, or

r .
Cr = (g/4%K) /! (2.26)

giving
Hence the coefficients decrease very rapidly as r increases (2.23)

may be expressed as:

lo
2 Jr(9/2%)sin(A vzr)g (2. 27)

r
T=K 3 T.(4/208 ) costA-200tK,
=-Te r--To
where r represents the largest r at which the series may be trun-
cated.
Once the solution to (2.17) is available, the sclution of (2.16)

is obtained by the standard method of variation of parameters taking

into consideration the proper initial conditions.
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¢) Determination of F
Alternatively the solution of (2. 17) may be written after McLachlan

[9] as:

T= K, Cey Opg) + My Sey(9,9) (2.28)

of b

where K and K, are constants to be determined hy the initial conditions
i z

and where

20 L
- = : 2.2
Ce = tos ely, + r’i 7 CF(U/,@J) (2. 29a)
s S (2. 29b)
e = s:nolvl+%iez Sety, ) .

which are known as Mathieu functions of fractional order. 'The functions,

o~ v

Cru()zv,ol) and Sr(‘q/)d) are still to be determined. d 1is a number

which may be represented by d = m + g with m an integer and 0< g < 1.
It is noted from (2. 17} that A and q must be related so that when

q vanishes A reduces to d?* and the solution degenerates to the first

terms of (2.29a) and (2. 29b). Letting

2 = r
Az o +Eb«,—% (2. 30)
=4
and substituting Ced and Se»d as T together with (2. 30) into (2.17)

and collecting coefficients of like powers of g, there results an infinite
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v

ne
number of ordinary differential equations in Cr and Sr which can be
~ ~
solved in sequence. By requiring periodic solutions for Cr and Sr ,
124 s
the Cr’ Sr and o can be determined, McLachlan [9] has given
the r up to =, . It was found that it does not always yield a suffi-
ciently accurate value of # , and hence the term g is hereby pre-

sented. it cap be shown that the o r with odd indices vanish and those

with even indices are:

Ay L
2(cl2-1)

2
Apz Sd +7
U TONES I A NERY)

w = 9d +58d ¥27
4 (d2-1)7 () %-4) d%9)

10 8 ¢ 4
g = 14090 2 44d - 140350 2 642284 1+ 8295¢5d "t 274748

(4(228) (217 Lo )3 (of2-9) Cl 270 " - (2.31)
It is seen from (2.30) if <, %2 << 012 , and the series is rapidly
convergent, as a first approximation d* = A ., Inserting A for d? in O{Z ,

and omitting terms of powers of q larger than the second in (2. 30), as

a second approximation:

2

240 % 2.32
d%= A - 3y (2. 32)
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Substituting (2. 22} for d? in ™y, and retaining d® = A for the other

Tr
of (2.31), (2.30) becomes:
o2 - -
2. 2 A LA L (EAFT) QT
A"z tmt ) [ 2(A-1) = «Zﬁ‘ 32(A-1)3(A-F)
CIATrsEA 2709
LA A1 (A-F)(A-D)
5. gi - % - F ‘1 5 ey . . B 8 )
S(I4CA 14T A 14038 A F (42284 152755 A2 187 ]
64(128)(A-1) (A-AP(A~9 I(A-10) , (&.33)

Now [ may be computed by the following procedure: sub-
stituting (2. 33) into (2. 31) to evaluate the «t's which in turn are sub-
stituted into (2. 30) to compute a new d. The value of d is substituted
into (2. 31) to determine the new ol's which in turn are substituted into
(2. 30) to compute another d. This procedure is repeated until no
substantial change takes place hetween two iterations. Once d is

obtained ¥ can be extracted.
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Chapter 3. Response of Rectangular Plates Based on Nonlinear Theory

o

a) Formulation of Problem

In Chapter 2, the linear behavior of a rectangular plate subjected
to the simultaneous applicaticn of the disturbances shown in Fig. 1 is
studied. However, if the lateral deflection is not small as compared
to the thickness of the plate, the linear theory used in Chapnter 2 may
not give amn accurate description of the frue hehavior of the plate. In
essence, the terms that represent the stretching of the middle surface
of the plate must be retained resulting in a set of nonlinear equations
of motion, The static equivalent is known as the Von Karman equa-
tion [10].

In this chapter, the nonlinear equations of motion will be used
to study the same problem dealt with in the previous chapter. The
equations and the associated boundary conditions will be derived
through the use of Hamilton's Pr.uciple in the Appendix., These equa-

tions are:

ob ’ X Tt

(3. 1a)

Fo (1-2EITYH(T-T) +4fiiﬁ?>( Ll Ut +L’LW)</V»%E>
‘ Frf U b




2/
4 \

XX

ke

xy
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Uygg o (222 h Ugg , Ut h Uy 75 - ML-v2) Uz
2 p? 2 wb EZg
(3. 1b)
W)i Mgx o+ (a-v) W’ W"—' + (1+) W’“){W’x /) = O
w3 2 @,b?— 2 a b?
e Y, - y - /’2' -
a5 4 M,, V) h Vo (240 Grgg . M 1132 Vg
2 p? 2 ab F ‘Z‘f"ﬁ
ISy g B Wy g 4 U0 T s )= o
b3 T2 TR 2 a2 h (3. 1c¢)
Wo,u=u, vy ,x=x,y=y andt =t
h h h a b T
11
In addition, the middle surface stresses and strains are
= h G-, 4 A (W)
= h by LA (W) (3. 2a)
o 2 a?
- 2
= h iy o+ _}}__(\74)9)2 (3. 2b)
b 2 b
= hi h V) +h w0 (3. 2¢)
=Wy 0 Vog +h Wiz Wog .
b a b
. E 3.3
Eh (Ex+y£77) (3. 3a)
(1-v?)
2 Eh (Eyy 4w Ey) (3. 3b)

(1-v2)
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Ny, = Eh__ &4, (3. 3c)
2044Y)

The plate is simply supported in the lateral direction. In the
plane of the plate the edge ; = 0 is restrained from motion and the
vertical edges are either 2llowed to move or be restricted from
motion. Ail the edges are restricted to remain straight. At the top
{y = 1), the straight edge condition is maintaived by having a rigid
bar. The rigid bar may be massless or may have a distributed mass.

Therefore the boundary conditions can be stated as:

:x—z:w,-—— =0 atx = 0 and;:—:l
X X
w=w,—— =0 aty =0 andy =1 (3.4a)
vy Yy Y
u :?X(t) atx =0
u :~\€X(t) atx =1
v =0 aty =0
v =0 (1) aty = 1
"y
(3.4Db)
N — — — —
xy =0 atx =0, x=1, y=0, andy =1
(3.4c)

It is noted that when the vertical sides are restrained from

motion, ‘Qx(:f;;) is zeroat x = 0 and x = 1.
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b) Solution for a Rectangular Plate with Movable Vertical Sides

Let the solution for w be:

A(f) sin 7 x sinTry + B(t) sinT x sin 3Ty

wix, v, t)=

+ C(t) sin 37 x sinTTy (3. 5)

where A(jc‘), B(?) and C(?) are functions of time. Substituting into
(3. 1b) and (3. 1¢) and retaining the products of A?, AB and AC, the

two coupled partial differential equations become:

hfigg @) h gy, WA Vg aeiayDligze§ = o

a? 2 b 2 ab FTiy (3.6)
g . Vg o - )T -

b V)“ + (i ))) h IR +££._E)) l"\ \/ ALl )«" )V}tt.'_glz_

b2 2 ol 2 wb 57;421 (3.7)

where

8,(3,7,%) = 3/722 ¢ AL (b 4pa) sin 2% + (b +a?dsinzrsicos2my]
«7% b FABL (- 2b2 + (-2480)l)s in 211X coszTy
+(2b* + (E-20)0*) s1n2TR cos4T Y]
FACL (-6 b2-2xa2) sin 2K +(-12b% + a5 n4TX
F(4h%-222) sin2T %k Cosam Yy

+ (262 4a”) 5in4TX ccséﬁ"/] }

and
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&(%,5,E)= 3 h’ A{ AL C-02rwb)s) oy +(a? +b*)sinamy eos 2w %]
Z 24 %
405 b7

+ABL(-Ca?-2ub)sinam s +(-12a% 4vb*)sinam 7
r(Lq2-2b2) sin2ny cosaTX |
tzal +4b2) 50 4T 7 Los1 % |
FACL(-2a? + (=2v50) p )sinay 7 cosam %
+(2ar 4»(8*;22))(52)51/73777005977‘;?} ‘

Solutionsfor u {x, v, t) and Vv (x, vy, t)

Let
and
vix, vy, t) =v, (x, ¥y, t) v, (x, ¥, )
(3. 8b)
where El (;, ;, jcw) and ;1(;; , gr-, ;) satisfy the homogeneous differ-
ential equations ( §, = %2 z0) with the inhomogeneous boundary

conditions (i.e., (3.4b) and (3.4c)) and EZ(;Z’ ;} t) and ;2 =, v, t)
satisfy equations (3. 6) and (3.7) with homogeneous boundary conditions

(i. e., (3.4b) and (3. 4c) with \KOX - \e\/ = 0O).
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Displacements u7(;;, ;, t) and v t

Let

- 2044 - . 22AA ) -
G : YA 3INZX ﬂr,?&;'/ly

- > - 2148
51 27Xcesziy + U 1

-+
£‘ T
Ur

SIN2TX COS4TY
zoac . - ~40AC .
. Sinemwx  + u% SIn=W x>

P e 2 L~ = :
Sin 2 Cesaiy + 0 SR s 20SeT Y (3. 9a)

and

B - - - B - 28 A -
Vo 0)3,E)= N stnamy t v LOs2TX 54050y

iy 2 osingny t ?QMB SIN4T Y

- 25 ™ N s "’24‘%\8 - -
24P Cosailx sinegy + V Cos2Txsin4Ty

.“2'2#(: - e "’4214.’; - -
+V Cose2TIX $INeiyY + ¥ COSHNX Sin2Tiy .

(3. 9b)

The superscripts of u and v are used for easy identification of the

terms.

The analysis is greatly simplified if the longitudinal inertia

terms in (3. 6) and (3. 7) are neglected. To compensate for the effect

of longitudinal inertia, it is assumed that all the mass of the plate is

concentrated at the top of the plate along a rigid bar
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Substituting (3. 9a) and (3. 9b) into (3. 6) and (3. 7) and comparing
the coefficients of each ¢/n myX cosnn'¥ (Equation (3. 6)) and 005})77';(“";,",3,-”7
(Equation (3. 7)), the unknown coefficients in (3. 9a) and (3. 9b) can be
determined in terms of the unknown time furctions of the lateral dis-

placements. This results in the following expressions for u, and v :

2 2

GaunE) = WL A ]’(;’\Q‘?tyr‘g’h)s/zxzﬁx b0 ingux «:.95?777]
l i6 b 16 o

P

vAB } (a?b*(-24942) - b -50% ) sinoir ¥ £OS 2T Y
Sala?t bi)>

+(a?b2(8*y)+54+20a§)ﬁn2mfmﬁ+W?]
8o (Fa2t h?)* |

+AC[C%b?4»aF)$MQW§ y 1262+ 9002 ) s qmik
. 1t o b? (4o b?

(a2 h2 6+ 90) +3 6% 0% ) sin 27K cosamy
galas &a)z

3 (02b? (6-0)¥ 126N a™) sin 7% cos:m”:/j}
4o (o2 +9b%)%
(3.10a)

and




27

Vo §E) = Th A% {(;@21»))62)5;/7 2y L 4 eosamg sin2Tmy
I ba® /¢h

+AB [(‘Gwa—Z.vbQ) sinamy + (-1222+4vb%) sindTy
/6 bo? 4 ba

Fle? b2 (et +3at-6%) cosamFsinamy
b la2+b?)?

F( ®2b2 (é"')/') +/2®4* u”} &{).‘72?7)?5/:’) ‘?77;]
Gh{4a?+ 27

Mc[ (a2 b2 (-2192) -t -5 b%) osenx simamy
8bhla?+b?)?

*

*’(&Z’b?‘ (8“)1)1‘*@44»30&4)805477)?51:)377?
&b la?+4b2)?

(3. 10Db)
Displacements G.—l (;;, ;, :c~) and\'—i'_l (;;, ;, 7c-)
Letting
Gl =, v, t) =(1-2x) \(JX(_) (3.11a)
vy B = ey e (3. 11b)

it is seen that the boundary conditions and the homogeneous equations
of motion are identically satisfied, The functions ‘ex (77:) and \0\/ (+)
are obviously related, and may be determined by the equilibrium con-

ditions along the boundaries.
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First consider the dynamic equilibrium of the rigid loading bar:

d
e ~7 - ~ ' 6://1!‘
L[) NT/(K‘, iﬁﬁ)ej'x = ’(N7¢+QO SH)“‘““‘H(’X’&""&) Mbh {)l \(:, >. (3*12)

35 dE
Using (3.2) and (3. 3), (3.12) becomes:
. 5 \
4 ;i L ¢ pt2wb ty) z»_._}i(m RO Sm e H(dz t)
ol G- Mi‘ h
e L 2 2 PN
+ é?.li Lz)a :TE_Iiﬁ {1+ J\bm/\, (3. 12a)
;) b ~
2 o -
where We - Eh and Mb is the mass per
Ml) b(i‘m

unit length of the rigid bar. Since the vertical sides are movable,
the stress resultants along the boundaries x =0 and x = 1 should

vanish, which gives:

?b(’(%.) 776}3,5\(1«éuw) - ‘*f""./!%’) : (3.13)
2] Qﬁ 8 62

Substituting (3. 13) into (3. 12) yields:

2
d ‘Qf & (Lgi\,d(:){fl V- )“?/@

o

i ( y%@ 5:/1ﬁu(o<f ”Z‘))

t‘%ﬂ
Z
o
s £

T AU
FUT ) TR AT (1) (3.14)

Lo 8
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uation,

ast eq

3
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o1

to three
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A%t [29-9v° | 2oy | b-dp ? VAT
’’’’ 2 2 A ) s T, 22
!iyi)“ k (5?;14 f},«‘zé £ f’/ uM? inag'{‘#bz) (3' 17)

To simplify the

Eliminating

Q.

+ 4 A

§2 .
d b

&

3720030 [

Lo ipor?l -

& present analvsis a aguarve
from (3, 15), (3.16) and (3,17}, one gels:

GG a3l . TN P S
I12 fotdr) % E/EJHCD 1)

i
(3.18)

i

H

3

‘?j}y 2

h

(3.19)

(3. 20)
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¢) Solution for a Rectangular Plate with Immovable Vertical Sides
If the vertical sides of the plate are immovably constrained

atx = 0 and x = 1 (3 = 0}, the displacement {1—1 = 0 will satisfy the

homogeneous part of (3. 6) and {3. 7} and the boundary conditions.

Then with ‘eX:D (3. 14) becomes:

2 ) 2 E =Ty
.'fg,f/ > LTy Wo>z\@y o z’:ﬁL (\Ny +QRy sin=%= 7f, Hiet 7 ﬁ’w

dE4 M
4 (Tyq ) TE WA (s 62) (3. 14a)
B ’ h§ &

The equations governing the lateral deflection((3.15), (3.16), and (3.17))

become:

2 4.2 2
dA (DT Tyyfd %‘%;>fi\ o Je Tyg ,:, (1-2F1EIH(T-F)
ﬁ‘f hor

):h?’n’%,i {_ﬁjﬂ (3@2 4 w“’*) 34%B  34%C

Eeraarall o ;
e LppR Nt aft o b® at bt
, ] (3. 15a)
_ /éA’Lfy ( 3 + ih> é
T2hw?) \e2b  b*/ )
2 I -
B 0T b (4,38 = T fo (4-28/2)HEEE)
di* a® b/ 3 h e
13t et o2y L2 oo g N a3 42
_Eh ”m_f%gi_f AB et dov i) A, AB
e Lyttt skt bt ) et (qatel)?
(3. 16a)

L FELe AR r ”y{

b}
Ferrbt b ) kb3




2

_ 5?5377“‘?[” i

Al (,_:si«w >“h 20wV é”‘%vz‘)“ 43 - AL

I=p*=\ a4 alh®

LA AT el g4y
zvgz)zm",a w2 . - 4'3"““ j
fa.t 9 b". {e21h%) 1‘1(& 22\ g

For a square plate of sides, a, (3. 18) « (3. 21} become:

z 7, ) ?’
dA | aqzp = 1T2fe 0T *’/@“)wn?t/*‘)/m Z)
d?é i E LA

2( 2 3 2 . 3 1 4
- ﬂ___%_i) ﬁw (C,,vﬁy»-ggg“) - 5;,"6 34 - /EﬁMﬁiy)
4 Jey® 720102 h

d 12 774 E 1

52,@55 (33¢200-135% 4 (4+ i e ,{} _Afeandc By () )

2102 h

Ci»(_t‘ o+ OO {P‘ é&iz)(” (1’,}) ,J 7 CLA I ‘i 2?/%0 b i’}_ ) ) 3~7n7q”(_j"‘:£2w’)

diﬂ{ 77»4 E {H.f 4

¢ a2 o

jA ; (35’1‘20‘» 132% 44 "*’“")f'ﬁ Q}; A3 4nt B 168 eya (fy )
i-p2 7?2517".133)/’)

1L, on?B = ("’t_ﬁf?“’j)(h)('i‘ 28 HE-E)- ST U
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{(3.17a)

(3. 18a)

(3. 19a)
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CYIW.PV + e \‘[7# o 40’/( .{;\_\ e s i )7/_,ﬁ Ho(x f - /7= )\
JEE TR KW\ N N AT /
' - u
:3) i+ 5) "} < (3. 21a)

24 h

clting the inertia of the rigid bar, (3.21la) becomes:

, J ® 1? e T \ b AT 1)
I — / ‘C,:L + 9 sin HILT L)) + - ‘
3 J A o 8
ot ‘\ ‘\!'Q /\ / : 9]

(3.22a)

d} Numerical Procedure

The system of nonlinear ordinary differential equations ({3.18) -
(3.21) and(~.18a) - (3.21a)) was solved on the IBM 360-50 computer at
The City College of New York using Hamming's modified predictor-cor-
rector integration scheme [15]. It involves computations of certain

items as given below:

' t i
Predictor: ) - . N oAy - 9
Prea = g ©TAE (29, “Iy-g +27n-2)
I\/I(}difier: - - R 5o
Mpyg ™ Pavy ST “n)
-m'ml = f “:Mj, y Met)
Corrector: ; )
e - i Y N
thj :%‘[}\/,)"‘\/n,z %5]1((7’\,1@‘_.*2*/”'- /rs~13J
Final Value: ‘/l7+i (\":741 +% (y niy " Cn»f’l}
21

This scheme is a stable fourth-order integration procedure that
requires the evaluation of the right hand side of a system of differential
equations of the form *y*E: f(t, yv) only two times per step., It also has the
advantage of being able to estimate the local truncation error at each
step and thus the procedure is able to choose and change the step size

without a signif ‘icant amount of compute ation time,
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Since this scheme is not self starting, a Runga-Kutta method,
which only requires the initial conditions to begiﬁ the solﬁ,tion, is used
to start the solution. Since the Runga-Kutta method is used only for
starting the solution, matters such as stability and minimization of
roundoff errors are not important. The cnly criterion of sighificahce
ig minimization of the truncation errcr. According to R;alston;‘wlé],
the Runga-Kutta scheme which has the most favorable bound of the

truncation error is:

Yigq =Tn t 17870028 &, *,5‘5’/»’%‘50@&&2413.2055'35(»0%3 +.17:18978 '/?4

where

-
H
AL

A’tn “f'('tn) 7;”»)
= At xe (“t,«, +“N~\fn) St V’f—/{?')

S 3
R ~
¥ \

at, §(E+ 45593125 4,y + 25697760 ky + 15875904 4k,)

hy = oaty FCbyratn, . 20810090 .ky ~3.0509651Cky + 3.83286474hs3).

Since it is very impozrtant that these starting values be as
accurate as possible, they are refined by one iteration step using the

following fourth-order interpclation forrnula:

[

Jo + Aty A 4 197, -5, +5)
24

Vi

Yyt N, + At 44, )
3

f ' ¢ [N

g
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Chapter 4. Dynamic Response of a Square Plate

The solutions presented in Chapter 2 based on the linear theory
and in Chapter 3 based on the nonlinear theory are nO\IN applied to a
square plate. After the time functions are determined, the bending
stresses and the membrane stresses can be determined. Since one is
concerned with the maximum stress, the severity of the dynamic
response of the plate to the dynamic loadings can bé conveniently dis-
played by a dimensionless quantity known as the dynamicv amplification
factor for stress (hereafter DAF). In what follows, the DAF will be
first defined and then followed by a presentation of the results obtained
by the linear and nonlinear theories. A comparison of the results will
be made which serves to delineate the limit of validity of the linear
model. |
a) Dynamic Amplification Factor

The DAF is defined as the ratio of the maximum dynamic stress

to the maximum static stress or

DAF = (ay +0y)/ % (4.1)

where 0y is the dynamic bending stress at the center of the plate

given by [14]:

(4. 2)
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and O, , the inplane stress which is the sum of the inplane prestress,

-~

Ny/h , and the dynamic inplane stress, QC /h , which occurs at
the same time as the dynamic bending stress, G’d . The static stress,
G , is the bending stress at the center of a square plate of sides, a,

and thickness, h, subjected to a uniform pressure P, It is noted that
T is a fictitious stress used for convenience. Assuming 2/ to be

0.231[17] 5 can be computed by:

0”5: 0'271f0 CQ»//))Z (4. 3)

If the DAF is known for a given plate subjected to a given dis-
turbance, the maximum dynamic stress can be easily obtained. Further
when one compares the DAF's obtained from the linear and nonlinear
models, one is essentially comparing the maximum stress amplitudes

evaluated by the respective models,
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b) Response of Plate Based on Linear Theory

The dynamic response of the plate subjected to a simultaneous
lateral N-shaped pressure pulse and a sinusoidal inplane pulse is now
considered using the linear theory. The cace with no time-lag is con-
sidered first, followed by the case with either a positive or negative
rime-lag, A positive time-lag means that the latera! distursaace teads
the inplane disturbance by a certain time and z aegative time-lag, the
inplane disturbance leads thie lateral disturbance by a certain time,

Due to the large number of parameters involved, it would be
impractical to try to locate the absolute maximum DAY by varying all
the parameters. On the other hand, it is now possible to investigate
a few typical cases so as to learn the trend and the order of magnitude
by which the interaction of the various parameters can be better under-
stood. In all cases the ratio, a/h, was taken to be 240[17] which corre-
sponds to what is being used for relatively large glass panes installed
commercially,

In evaluating the time functions, the first nine symmetric modes
are computed and the contribution of higher modes ave neglected, Due
to the rapid‘ convergence of the series solution, reliable results can be
obtained by considering just the first three modes as demonstrated in

Table 2 for a typical case.
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Table 2. Comparison of Maxirmum Response - Thiree Versus Nine Modes

p, =2 ’i’\’iy/l\IC = 0 O_/N =174

Three Modes Nine Modes

R w DAT W DAF
. 60 0.422% 2. 190 o424 2,270
. 80 0.5%21 2,821 0.5601 2. 881
95 0,581 2.830 0. 581 | 24 Bha
1,20 0.5121 2,565 0,54 | L, had
1. 40 0,453 2. 54t A5 H 4k
1. 60 0,438 2.763 0,440 | 2, 831
1.80 0.452 1 2. 884 0. 454 | 2. 967
1.97 0.518 2,940 0,519 13,015
2. 20 0.504 2,983 0,505 | 3,073
2,40 0.475 i 2,999 0.477 13,088
2.60 0.479 1 3. 000 _ 0,480 ;3.053
2. 80 0.482 12.999 | 0,483 13,091
3.00 0.48512.999 |  0.486 3.082

Before presenting results for specific cases, it is helpful to
recognize certain peculiar effects brought about by the presence of the
inplane load, It is clear that since U a and O s are proportional
to P, while T y is independent of P, the DATF is not linea+iv nropor-
tional to P In fact, as P, increases the NDAF decreases although the
maximum stress increases. Further, the DAT is ditfevent {yvom zero

at R = T = 0 for which the dynamic effect would ovdinarily he zero if

there were no inplane loads.
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i) No Time-lag
The envelopes of the DAF as a function of R are given in Fig. 2
for Qo /NC = 1/4 and 0 to illustrate the effect of the dynamic inplane load.

I'g

The overpressure, p , is taken to be 1 nsf and the duration of the inplane
o .

dynamic load is the same as the lateral N-shaped pulse (= 1), It is
chbzeyved that the DAF is always higher when the: o ‘= 2 dynarmic inplane
load.

In Fig. 3 the critical time, ?c’ for the maximum DATF corre-
sponding to Fig. 2 is plotted as a function of R. Tt is seen that the
presence of the dynamic inplane load tends to shift the time at which the
maximum stress occurs from the free phase to the forced phase of the
motion, When R is slightly above 1, the critical time, at which the
maximum stress occurs, is always found to be in the compression phase
of the N-shaped pulse. The practical implication is that except for a
very flexible plate, the maximum stress always occurs at the beginning
of the N-shaped disturbance due to the presence of the inplane disturbance.

The effect of a static inplane compressive load or prestress

('l\lly/NC =1/4) may be seen in Fig. 4 where the envelopes of DAY versus R
are plotted., The maximum DAF is 5.7 for QO/NC =1/4 and 4,7 for
QO/NC = 0. Comparing Fig, 4 with Fig. 2, the increase in the
maximum DAF due to the presence of the prestress is about 2, 0 for R

above 1,4, As in the previous cass when the prestress is absent, the
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DAF is always higher when there is a dynaraic inplane load,

In Fig. 5, the critical time, {C, for the maximum DATF corre-
sponding to Fig. 4 is plotted as a function of R. A similar trend is
found as in Fig. 3, i. e.;, the critica? tirme fends to be shifted to the
forced phase.

in ¥Fig, &, the effects of increasing the duration of the dynamic
inplane load is seen. It is observed “ ir pecaval, the jonger duration
(™ = 2) gives smaller DAF's; hence is legs critscal,

ii) With Time-lag

That the simultaneous application of iateral and inplane dis-
turbances without a time-lég may not be the most likely case is obvi-
ous. Furthermore, it may not be the most critical case. Hence a
time-lag is introduced into the linear problem to study the possible
effects. It is decided to choose a relatively large value of R (R = 3)
because it was discovered from the previous results that the DAF usually
is stabilized at such a value of R, The resultsave presented in Table 3,
It is clear that with a proper time-lag (positive or negative) the abso-
lute maximum DAF is always larger in every case than the correspond-

ing value for no time-lag, Correspounding to QG/N =1/4 , the

oy

maximum DAF could be larger than 6 when N ~‘/Nc = 1/4 and larger than
‘}/ -
n
4 when Ny/Nc =0 , These DAF's are significantly larger than the
corresponding DAF's, 4. 04 and 2. 65, when ihe dynamic inplane load is

absent,
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Table 3a. Maximum DAF and ;cr Corresponding to Negative Time-lag.

p =1 O /N =1/4 a/h = 240
(8] (8] C
T /T=0 t /T =-010 t /r=-0.25
. o] O O
Loading - T —
Condition DAF t DAT | t DAF t
VC I ) o { O ) (o of
NW/N( =0 3.50 .180 | 3.97 | .1681{ 3.25 170
ol = ] ' : i
"1(13/1\1(‘ =14 | 5. 66 1 220 ! 6.02{ .98 1 513 180
v -
}Ylv/NC =0 2.91 160 | 3.33 | 162 | 3.85 . 165
ol = 2
E’qy/NC = 1/4 | 4.92 180 ! 5,41 ] .180 | 6.00 . 200

Table 3b. Maximum DAF ard :C‘cr Corresponding to Positive Time-lag.

p =1 O /N =1/4 a/h =240
e} O C
T /=0 t /T=-010| t /T=0.25
TLoading I T
Condition DAF £ DAF | t DAT t
cr Cr Cr
Ny/NC =0 3,50 L1801 2.72 1 .170 | 2. 67 500
of = ]
Ny/l\l(‘ =1/4 | 5.66 220 | 4. 64 170 | 4. 00 175
Ny/NL =0 2,91 L1601 3,10 748 | 3. 14 . 684
®=2
f\iy/NC =1/4 | 4.92 | 180 | B 26 | 874 | 5.92 850
, | |




c) Response of Plate Based on Nonlinear Theory
The nonlinear model is constructed to include ihe mid-sucface
stretching of the plate. At the boundary of the plate, it is no longer

21 displacement only,

sufficient to prescribe conditions governing the late:

T,
in

The inplane displacements {or iractions) tnust also be prescribed,

citied:

previous chopter, two different boundary condit

pranvable yertical sides and immovable vertical sides. in both cases,

wain straight. Alonyg the edge whers the dynamic

£}

the wd es are to rel
inplane load is transmitted, two sets of conditions are specified. One
has the mass of the plate lumped along a rigid bar at the top of the
plate (k = 1) and the other a rigid bar with nc mass (k = 0)., To simplify
the problem for the nonlinear case, the lateral and inplane pulses are to
have the same duration (<= 1} and there is no time-lag.

In evaluating the time functions, the first ibree symmetric modes
are computed and the contribution of higher modes are neglected. The
membrane stress in the plate corvesponding fo the houndaries with

movable sides becomes:

I Eq?  § A*(lL-cosak) + 2AC(cos2WX -tos4ns)
Bea/l)? . .
~2AB tosenx (cosany -4 eosqny)
’ 25
7

PR A e S iy

240 (ews oy -

(4. 4)
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and the membrane stress corresponding o the brmovable vertical sides

becomes:

Gy = Enr? (A% AT cosami 5 2AC(CosagX - Cos4TR )
galh)? Y

= 2AR racomg T ooy - L cosaTy)

=2AC (tos2mk - 1 cos4TTX ) rocer ¥
2.5

~B o (4.5)
L (A *
The dynamic bending stress is evaiuat=d Ly fthe v =ovation, (4,2), as
in the linear model.

1

The problem with the movable veriical ¢iles wae solved numeri-
cally for k = 0 (no mass on top) and k = 1 (with mass on top) when the
prestress was absent. The maximumn deflections and stresses obtained
were found to be almost identical.

If (3.21), for the movable vertical sides is lincarized, the solu-

tion for quiescent initial conditions is:

7

A Ny (4 cos f2U
© 12{alh)a-»%) N, ( o J

40 /AR [ 20E
oty (2T Nel T
ol T+




45

With a/h = 240, v/ = 0,231, k=1, == 1, and 7 greater than 0.1, (4. 6)

is approximately equal to

— . X
all N 1 . -
P, = il , NY oy v, Ple s R .”5/1)80771&)

NErY SO (4-ce: Uy (4. ba)

€

TV ke inws e of the loading bay is sotodd, the goluiion to the

. e i

3N

/ ’ '3 \”Vﬂ o ¥ P -
EHICNOIS IS R (4.7)

cgual provided 1
40 R

N /N = 0, the two solulions ave approxino
y. ¢

is much less than unity. This is true except for very small R, There-

fore it seems that the longitudinal inertia can be neglected if R is not

too small and there is no prestress. In the subsequent digscussion both

the longitudinal inertia and the prestress will not be considered,

The maximum DAF for the movable vertical sides as a function
of R is given in Fig, 7 for P, = 1 and in Fig, 8 for Py . Comparing
Fig, 7 with Fig. 8, the effect of the inpiane dynamic load on the maxi-
nmum DAF is seen to be less for P, = 4 when R is greater than |, e

The maximum DAT as a function of R is nloited {or the immov-
able and movable boundaries in Fig, 9 {ow g&}‘:,”' fo = 0 and p(} =2,

Fig. 9 shows that the maximum DA is always larger for the movable

boundaries than fov the immmovabls 70 ~. 7o i not surprising
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i to a lateral load only should

since the lateral deflection of a plate exyp

5

be larger when the boundaries are ailowed (o move., However in Fig. 10
H

where all the conditions on the plat: - as in Fig., 9 except

Q /N = 1/4, it is seen that i
o ¢

fuo e sisvatie boundaries may be,

depending on R, “ithan the DAL for the immovable

an inplans dynawide pulse or w0l dhare 1o vy Drite 00df

the maximum DAI's for the sovable and irenovable boundary conditions,

- Theories

d) Comparison of Linear and Monl

The dynamic bending stress, o

oy is no Jonger proportional to P,

in the nonlinear model as it was in the linear model. Furthermore, there

is a membrane stress due to the mid-surface stretching. As a result,

the stress distributions through the thickness of the plate are different
for the two models. However, if one is interested in the maximum stress
which always occurs on the surface of the plate, some meaningful com-
parison can be made of the two models. in order to make the comparison,
the contribution of the first three wodes is used for both models., The

decrease in the number of modes used does nol significantly change the

results of the linear model as was demonsirated in Table 2.

If the equations (3.18-3,20, 3..2) ch are for the movable

boundaries with the inertia of the rigid bar negiected are linearized, the

4.k

resulting equations (2. 9) are {hose ohiained by ihe Hneay theory., There-

fore, for the purpose of co nresented for the nonlinear

ey

model are for the movahle be




The envelopes of w as & ©

R=1, O /N( is takean to be O and j/4
o "¢

nd nonlinear deflections differ

approximately equal to 0,5, the lins

toe becomes magnified as w

only by about 10%. Of cours

increases, It js also noted ool the eifect nf the tnplane pulse on the

deflections is more or less wnb for the nonlinear medel at larpge w,

If the curves for the maximam DAT o ig, 7 are now compared

by Lo fluear fnzory, one seces that they are

to those of ¥ig, 2, obtain

almost identical, 'I'his iz vob surprising since lhe deflection in this case

Thint the results of the linear

is always less than 0, 3.
theory are still accurate,

e daeflection versus R with

In Fig. 13, the envelop

O /N =1/4andp =2 are shown, iz seen that the deflections (the
o ¢ o

maximum of which is ahoui 0, () for the linear model are about 10%

[
et

alinear model, Therelore, one

b,

larger than the deflections

by the Vinear ynodel may be

would expect that the strosses

more than 10% higher than

This is verified in Fig. 14 where the envelapes of the DAY are plotted.

i the validity of the linear

if a 10% error is tolerated

& than one-half,

theory should be confined o a value of w
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It is noted from Fig. 14 that for R less than [, 2, the DAF of
the nonlinear model is larger than the DAF of the linear model. This
is due to the fact that when R is less than 1.2, the critical time occurs
after the dynamic inplane pulse ie oif the plate, Apparently the mem-
brane stress in the nonlincar modeal nwore than offsets the difference
in the bending siress which, as the deflection, :s larger in the linear
model,

In Fig. 15 the eanvelopes of the deflection versus R are shown
for P, = 10 for the same plate. Unlike the results shown in Fig. 13,
the deflection of the linear model is nminch larger than the deflection
of the nonlinear model. Obviously, one would not expect the stresses
predicted by the linear theory to be acceptable. However, even the
Von Karmén's nonlinear theory prsadicts the maximum deflection on
the order of one and a half tc twice the plate thickness. The question
naturally arises as to whether th ceontts of the nonlinear model are

valid, A higher order nonlinear theory iay be necessary,
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Chapter 5. Summary and Conclusions

The transient response of a simply supported rectangular plate
subjected to a dynamic inplane load in the form of a sine pulse and to a
lateral N-shaped pressure pulse is exesa ned,  the wmposition of the
lateral and topiane disturvances may be simulitaneous or separated by

a prief tirne-dziay,  In addition, there may be - ¢iavic irplene com-

resgive load, Ghe support of the ot o snel ke Lo tensile Inplane
p b I
lead is transmitied to the plate. The problem simulates a window pane

exposed to the effects of a far-iield soric boom disturbance with the
inplane load transmitted from the roof structure,

The problem is studied first by a small deflection or linear
theory., 'The governing partial differential equation of motion is reduced
to a set of ordinary differential equations by assuming mode shapes that
satisfy the boundary conditions, Due to the presence of the inplane
dynarn%.c foad in the form of & «ine nulae, the eguations of motion are of
the Mathieu type. Following McLachlan, the golution is olitzined in

terms of Mathieu functions of fractional order., However, the existing

method does not always insure an accurate dete v coeffi.

cients in the series solution as can be

sle b, An improved

procedure is presented by which for «!!

snooanter

o<, the

coefficients in the sevics solution are siways corvectly determined,
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The convergence of the linear solul ¢ns is demonstrated by
using a three mode and a nine mode expansion, It s seen in Table 2
that reliable results can be obtained by considering just the first
three modes. As expected, the inplane dyramic iead induces sub-
stantially higher stress in the plate (see Fig. £ and Fig. 4). In
addition, Table 3 shows that the time-delay can cauvse a subeiantial
increase in the dynamic amplification facter or cyreoonie stress,

Since the lateral deflecti

of the slate gan resch such & mag-
nitude as to render the results of the linear theory in doubt, a nonlinear
theory, which takes into account the stretching oi ihe mid-surface of
the plate, is used. The equations of motion and the zssociated bound-
ary conditions are derived in the Appendix using Harailton's principle,
In the nonlinear theory, in additicn to the usual simply sup-
ported boundary conditions, the problem is pozed for two different
inplane boundary conditions: movable vertical sides and immovable
vertical sides, For both sets of inplane boundary coenditions, the
longitudinal inertia of the plate is either neglected or considered by
assuming that all the longitudinal mass is concentrated at the top of
the plate. A three mode expansion for the lateral defiection is proposed
and the inplane displacements are deterinined in terms of the lateral
deflection. The equation of motion ig redused fo 4 sysiem of ordinary

nonlinear coupled differential equaticns oy oo ases o inethod,  These
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equations are then solved numerically using Hamming's modified
predictor-corrector integration method. It is found that if the static
inplane load is absent, the solutions are almost identical whether the
longitudinal mass is neglected or wiwen it i3 assuinad to be concen-
trated at the top, The effect of the two different inplane boundary con-
ditions nanmely, movable and immovable verticza! sides, iz shown in
Fig. 9 for QO,/NC = 0 and in Fig. 10 for NG L/%4. it is seen that
the maximum stresses at the center of the plate are approximately the
same for either boundary condition,

When the equations of motion corresponding to the case of mov-
able vertical sides and no longitudinal inertia are linearized, the result-
ing equations are exactly those of the linear theory., Therefore for the
purpose of comparison, the results for the movable vertical sides are
used. It is found that for P, = 1 psf, the results of the linear and non-
linear theories are almost identical. This is not surprising since the
lateral deflection in this case is always less than 0. 3 of the thickness
of the plate. For P, = 2 psf, however, it is found that the deflections
obtained by the linear theory can be more than 10% larger than those
obtained by the nonlinear theory. Therefore the stresses predicted by
the linear theory can be more than 10% off than that predicted by the
nonlinear theory. One may conclude, therefore, that if a 10% error is
tolerated, the linear theory gives acceptable results if the lateral

deflection is confined to be less than one-half the thickness of the plate.
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Appendix Derivation of Nonlinear Equations of Motion and Boundary

Conditions Using Hamilton's Principle

In addition to the usual assumipticons for a thin elastic plate, it is
assumed-that
aj the magnitude of the lateral defiection, w, is of the same ordeyr of

magnitude as the thickness of the plate;

b) the tangential displacements o and » = infinitesimal so that the
only significant nonlinear terins in the sirain-displacement equations
are w, andw, .

x iy
Then the middle surface strains are given by:

E - 2
xxo = UYyx + %(W)x)

6\/\/0 = \/)7 + _i‘(\/\/)\/)z

EX‘/O = “)7, + V)x + W)X \f\/)\/

EXZO: 2\/20: EZZO—"O (A1)
and the strains at any point are given by:

Exx T Exxo ~ % Wixx

Eyy = Eyyo T ZWiyy A 2)

EX\/ = 5)(\/0 27 Wxy

EXZ :E\/zT-EZZ: @]
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Furthermore, it will be assumed that the strains are small so that Hooke's

Law applies:

_ E
Tux = Fayes (Eyy v Eyy)
E 4 X
0‘\/\/ = .-z—:;z\é\/y + v &%;ﬁ,;

Hamilton's principle states:

STV W)t =

(A. 3)

(A. 4)

which means that the integral of the lagrangian function (L=U-T-W) over

a time interval tl to t, is an extremurn for the actual motion with respect

2

to all admissable virtual displacements.

vanish at the initial and final configurations.

These virtual displacements

It is noted that T is the

kinetic energy of the body; U is the total strain energy of the body; and

W is the work done by the exiernal forces,

material

U = ;jv 9% €1 dv .

for a linearly elastic
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Substituting (A. 1), {A.2) and (A 3) into (A.5) and integrating

through the thickness yields
_ 1 . o
U = 2[ NX L‘ 194 + i\\" ‘Jy """;i} :f’ ’L "1: v “] fgj'\; 7" \/)x )

1 2 v .
' j;( Nx Woxo M‘\’j ey MRS ;\‘"}V‘,'/ W)y WP/)

£

¢ . WL N . | -
+i} "j_ ( W)X)( + 3y 7 ER v Zi’")‘i;-}f 7Y v\/)}(x) \,v)\/\/

+2000) Wyt

where

Eh o
NX - _1",))2 (EXXO i"‘,;) }:xf-},-cx‘ P

_ Eh
1-v2

( E Yy o + w2 2 5% 5L \\

Eh
N N E g <o
L PV St

—

iﬁi— (A.7)
12.01-v2)
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If the plate is loaded by a distributed lateral load, q(x,v,t);
normal and tangential inplane loads, Nn and Nt; bending and twisting
moments, Mn and Mnt; and a transverse shearing force, Qn; (as

shown in Fig. 16) the external work dor« bwy thiese {orces is:

+cht(vcose-usmé)Jc. (A. 8)

The kinetic energy of the plate is given by:

S cutevientdg (4. 9)

Substituting (A. 6), (A.7), (A. 8) and (A. 9) into (A. 4) and inte-
grating by parts yields:

U { (v = DT + Nuwixx +2Nyy wixy + Ny Wiyy

by +w,X(N,<)\+N><\/,\/) + Wy (Nxyyx + Ny, y) + 9 )dw
Ny x + Nxy,y —0 U) du +(Nx\/,X+N\;,7/ v )] d g

v ( i[ Dt1-») (wyyy cos’ ‘o 4 2W’>XVSIA@Cf>5@+W)7\/ sin‘e)

“Dv aw- Myl (dw)
o
+L-Da-w) C§ %(W)xx Wryy)sing ¢ Ofé?JrW)x\/(ﬁm 8 -cos 8)}

+ D(Av\l))mcb@ AW,y sine)
“(Nyp wyp +Neo w\,c\ +Qg~§_ Moy o] (A. 10)

+ (." N nA + Nﬁ) fy‘ﬂ Jf"(é PZ% n + N,& \' Li‘s" ,; i % ”é T=0Q.
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Since all of the virtual displacements are arbitrary, from the
tinn esch of the integrands in

fundamental theorem of calculas of varia

equation (A, 10} must vanish separately. This yields the following

differential equations:

DV%W = _,/UU \’!“’/ + % "i' Nx V\/)xx e ;:f i\*;j:,( }j ‘\e'v"}x \/ "F]\“,u;/ \V)Y\/
LIRS lNX}x’ + N;{’x/) ‘}1) * ‘N)\;/ {Nyij + I\I,\/)\/)

Nigu ¥ Mheyyy = peu =0 (A.11)
Nuyyx +Nyyy —p ¥V 20
and the boundary conditions on the boundary c:
: .2
DLC2-v) (wyyx tos’e + 2 W)Xy SIN O LOSEFWyyysin 6)F vawl
+ M,z 0 or d(w,p) =0
D[(i-u‘)é& ((W)XX “Wyyy) Sinecose + w)x\,/{sm?“e»wfev
c
-3 (Aw) €ose - 9 (AW)Sindl
oX oY
+(Ny cos’9 + 2 N+ 5IN@cosd +Nysinte) Wy,
+ (-Nxsing cosg + Nxy (eos’e -s1n*6 ) + Ny sinecosg) Wye
"R+ IMpr =0 o dwzo
J 1
Nx cos?@ + 2Nxysin@cosg + Nysiis ~ Ny or dnco
“'D;:’NL ardtso,

(-Nysinetosg +Nx\/(C0526v sinfe) + Ny Shn B

These results were first obtained by ¥
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